A háromszögek fajtái és sokoldalúsága

A háromszög egy olyan sokszög, melynek három oldala van. A három oldalból következően pedig három csúcsa is van. A csúcsokat nagybetűvel (A, B, C) szokták jelölni.

A háromszög oldalait kisbetűvel (a,b,c) jelöljük. Az erre vonatkozó szabály szerint úgy, hogy az A csúccsal szemközti oldalt a-val, a B csúccsal szemközti oldalt b-vel, a C csúccsal szemközti oldalt pedig c-vel.

0 3.7k
Share
Primitív függvények (Határozatlan integrál) - TUDOMÁNYPLÁZA

Az analízis legfontosabb részterülete az integrálszámítás. Ha a primitív függvényeket vizsgáljuk rögtön egy definícióval kezdhetjük.

0 738
Share
Fontosabb függvények primitív függvényei

A legfontosabb elemi függvények primitív függvényei levezethetőek, de mi ezt kihagyjuk.

0 305
Share
A 2. derivált jelentése - A 2. derivált a meredekség változását adja meg. Tehát információt tudhatunk meg a függvény görbületeiről.

A 2. derivált jelentése – A 2. derivált a meredekség változását adja meg. Tehát információt tudhatunk meg a függvény görbületeiről.

0 635
Share
Fordított feladatok függvényvizsgálathoz - TUDOMÁNYPLÁZA

Ezeknél a feladatoknál a függvény egyenletét kell megkeresni néhány megadott pont alapján. Írjuk először fel a függvények általános egyenletét! Például Harmadfokú polinomfüggvény: f(x) = ax3 + bx2 + cx + d Negyedfokú polinomfüggvény: f(x) = ax4 + bx2 + c (ez szimmetrikus az y tengelyre nézve!) (A szimmetria miatt a páratlan kitevők elhagyhatóak.) Ezekből képezzük …

0 115
Share
A függvény nevezetes pontjai - TUDOMÁNYPLÁZA

Összefoglalva: Metszéspontok az y-tengellyel x = 0 Zérushelyek (metszéspontok az x-tengellyel) f(x) = 0 (y =0) Szélsőértékhelyek f'(x) = 0 A megtalált értéket behelyettesítve 2. deriváltba: f”(x) < 0: maximum f”(x) > 0: minimum Inflexiós pontok f”(x) = 0; f”'(x) ≠ 0 Az inflexiós pontba húzott érintőt megkapjuk, ha a kapott értéket behelyettesítjük az 1. deriváltba.

0 206
Share
Szimmetria-tulajdonságok

Ha x csak páros kitevővel fordul elő (esetleg még konstansok is vannak), akkor a következő érvényes minden x-re: f(-x) = f(x) Az ilyen függvényt páros függvénynek nevezzük. A függvény szimmetrikus az y-tengelyre.     Ha x csak páratlan kitevővel fordul elő, akkor a következő érvényes minden x-re: f(-x) = – f(x) Az ilyen függvényt páratlan …

0 361
Share
Mintafeladat a függvényvizsgálathoz 1

    Add meg a függvény tengelyekkel való metszéspontjait, a szélsőértékeket, az inflexiós pontokat, valamint az inflexiós pontba húzott érintő egyenletét!   Megoldás: Képezzük először a deriváltakat!               a.) tengelyekkel való metszéspontok: » Metszéspontok az x-tengellyel: Zérushelyek: f(x)=0           Horner elrendezéssel kiszámoljuk a zérushelyeket: Együtthatók …

0 138
Share
Az integrálszámítás szabályai

              Példa: Egy függvény deriváltja a következő: f\'(x) = 2x; A függvény átmegy a P (2; 7) ponton.     P koordinátáit behelyettesítve: 22 + C = 7 ⇒ C = 3 f(x) = x2 + 3

0 188
Share
Egyéb területképletek háromszögekhez - TUDOMÁNYPLÁZA

Kis háttér-kiegészítésként elmondható, hogy a Heron-képlet vagyis a sokak által Hérón-képletnek nevezett formula az Alexandriában élt Héron görög matematikusról kapta a nevét, mert ő bizonyította elsőként.

0 356
Share