A mammográfiai szűréseket forradalmasító eljárás és az erről szóló közlemény is nagy sikert aratott.
Az ELTE Komplex Rendszerek Fizikája Tanszék kutatóinak közleménye 17 000 cikk közül került a legjobbak közé. Ráadásul a cikk az év 30. legolvasottabbja lett a Nature Scientific Reports lapban. A publikációt Ribli Dezső Phd-hallgató (Komplex Rendszerek Fizikája Tanszék), Csabai István egyetemi tanár (Komplex Rendszerek Fizikája Tanszék) és Pollner Péter, az MTA-ELTE Biológiai Fizika Kutatócsoport tudományos főmunkatársa mellett a Semmelweis Egyetem kutatói – Horváth Anna és Unger Zsuzsa – jegyzik.
Az eredmény kiválóságát az is mutatja, hogy a rangos nemzetközi folyóirat TOP100-as listáján nem szerepel más hazai publikáció.
A tudományos közlemény egy rendkívül innovatív eljárás, az úgynevezett deep-learning alkalmazását mutatja be a mammográfiai diagnosztikában. Az amerikai Nemzeti Rákkutató Intézet és Joe Biden volt alelnök által indított Cancer Moonshot kezdeményezés keretében szervezett The Digital Mammography DREAM Challenges nemzetközi felhívásban a résztvevők mammográfiai felvételek minél jobb diagnosztikai kiértékelésére vállalkoztak. Ribli Dezső több mint 1200 kutató közül második helyezést ért el. A módszer leírása szabad hozzáférésű tudományos publikációként jelent meg a Nature Scientific Reports hasábjain. A hazai kutatók által kifejlesztett szoftver képes arra, hogy megtalálja a rosszindulatú tumorok 90%-át. Úgy, hogy 10 képre átlagosan csak 3 darab téves jelölést rak. Ez az eredmény óriási jelentőségű lehet a klinikai gyakorlatban, a minél korábbi és pontosabb diagnózis érdekében.
Az emlődaganat világszerte a leggyakoribb rákos megbetegedés és vezető halálozási ok a nők körében.
Az emlőrák gyógyításában és korai diagnózisában kulcsszerepet játszott az 1970-es évek elején kibontakozó radiológiai szubspecialitás, a mammográfia megjelenése, amely az egyik legnehezebb és legnagyobb kihívást felvonultató szakág. Így a gépi segítség és asszisztálás kérdésköre már korábban is felmerült a szektorban, a rákdiagnosztika terén. A szakemberek az 1980-as évek első felétől használnak komputer-asszisztált diagnózisokat (CAD), azonban a mesterséges intelligencia megjelenése új távlatokat nyújtott a diagnosztikában.
Az elmúlt 5 évben valódi forradalom zajlott le a számítógépes képfelismerésben. Számos esetben a mesterséges intelligencia vívmányait is használják a kutatók. A hagyományos módszerek hibaarányát nagyságrenddel csökkentették a mély mesterséges neurális hálózatokon alapuló ’deep learning’ rendszerek. Ezek a programok a hétköznapi képeken lévő tárgyak, élőlények felismerésében az emberi teljesítményhez hasonló pontossággal működnek. De nagyságrendekkel gyorsabbak és fáradhatatlanok.
A diagnosztikában a hagyományos képelemző szoftverekben a képet aprólékosan megtervezett, kézzel készített jellemzőkkel próbálták leírni.
Például elváltozások alakja, mérete, majd egyszerűbb klasszifikációs módszereket alkalmaztak a kinyert jellemzőkön (például szignifikanciavizsgálat, K-közép klaszterezés). A deep learning ezzel szemben a nyers képeket sok egymás utáni szűrősorozattal dolgozza fel. A szűrők paramétereit pedig önállóan, kizárólag az adatokból tanulja. Az ELTE-s kutatók által kidolgozott képelemző neurális hálózat működését a legegyszerűbben úgy képzelhetjük el, mintha lenne egy nagyon gyors és nagyon szorgalmas asszisztensünk, aki papírlapokba több, különböző méretű és alakú lyukat vágott. Ezeket a lapokat egymás után ráfektetve a mammogramra, csak a lyukon át látható tartományra koncentrálva, minden részletet megvizsgál, amikor végighúzza a lapot a kép minden pontja felett.
Azokat a tartományokat, amelyek olyan képi objektumokat tartalmaztak olyan arányban, mint amilyeneket rosszindulatú daganat esetén már korábban látott a tanítóhalmazokban, megcímkézi egy gyanússági pontértékkel. Az így nyert, leggyanúsabb képrészletek helyeit ezután bejelöli az eredeti képen egy-egy téglalappal. Az alkalmazás során csak a rosszindulatú tumorok jelöléseit mutatja.
Amennyiben a módszer a számos soron következő tesztelés során is sikerrel bizonyít, úgy megoldhatóvá válhat a mammográfiai szűrés olyan kórházakban, ahol a szakemberek jelentősen túl vannak terhelve, és az intézmény erőforráshiánnyal küzd.
No Comment