Egyenletek

Egyismeretlenes egyenletek
Az A(x) = B(x) kifejezést egyenletnek nevezzük, ahol x az ismeretlen. A és B tetszőleges algebrai kifejezések. (Az ismeretlent természetesen jelölhetjük más betűvel is!) Alaphalmaz: minden olyan szám, ami az egyenletbe behelyettesíthetőnek tűnik. (jelölése: A) Definícióhalmaz: minden elem az alaphalmazból, amelyet az egyenletbe helyettesíthetünk. (jelölése: D) Megoldáshalmaz: minden elem a definícióhalmazból, amelyet az egyenletbe helyettesítve …

Ekvivalens átalakítások
Egy egyenlet megoldáshalmaza nem változik, ha mindkét oldalát a következőképpen változtatjuk: ugyanazt a számot (kifejezést) adjuk, illetve vonjuk ki mindkét oldalból ugyanazzal a számmal (kifejezéssel) (szám, illetve kifejezés nem lehet nulla) megszorozzuk mindkét oldalt ugyanazzal a számmal (kifejezéssel) (szám, illetve kifejezés nem lehet nulla) osztjuk mindkét oldalt. Mindig megpróbálunk egy egyenletet ekvivalens átalakításokkal a lehető …

Diszkrimináns
ha D > 0, két megoldása van az egyenletnek, ha D = 0, egy megoldása van az egyenletnek, ha D < 0, egy valós megoldása sincs az egyenletnek.

Harmadfokú egyenletek
A harmadfokú egyenlet általános megoldóképlete nagyon bonyolult, és emellett gyakorlatban is alig használják. De egynéhány esetben egy harmadfokú egyenletet vissza tudunk vezetni egy másodfokúra.

Horner-elrendezés
A Horner-elrendezés (William George Horner, 1786-1837) segítségével ki tudjuk a polinom értéket számolni, és egyúttal el tudjuk osztani a polinomot egy lineáris faktorral.

Negyedfokú egyenletek
Niels Henrik Abel bizonyította be 1824-ben, hogy a negyedfokú egyenlet a legmagasabb fokú egyenlet, amely általános alakban megoldható.

Többismeretlenes egyenletek
Szorzathalmaz A szorzathalmaz A×B (ejtsd “A kereszt B”) két halmaz A és B rendezett számpárjaiból áll, amiknek az első eleme az A halmazból a második eleme pedig a B halmazból való. A × B = {(x ; y) ¦ (x e A) és (y e B)} Példa: A = {1; 2; 3} B={1; 2} A × …